Search results
Results from the WOW.Com Content Network
The surface of the projectile also must be considered: a smooth projectile will face less air resistance than a rough-surfaced one, and irregularities on the surface of a projectile may change its trajectory if they create more drag on one side of the projectile than on the other. However, certain irregularities such as dimples on a golf ball ...
Like many Casio calculators, the FX-7000G includes a programming mode, [3] in addition to its display and graphing mode. It holds 422 bytes of programming memory, [ 6 ] less than half a kilobyte. However the calculator does allow for expanded/additional memory by a method of reducing the number of steps within a program.
The correct term for those pieces is "fragments” (nicknamed “splinters” or “shards”). [1] Preformed fragments can be of various shapes (spheres, cubes, rods, etc.) and sizes and are normally held rigidly within some form of matrix or body until the high explosive (HE) filling is detonated.
The tool comes pre-programmed with 36 different example graphs for the purpose of teaching new users about the tool and the mathematics involved. [ 15 ] As of April 2017, Desmos also released a browser-based 2D interactive geometry tool, with supporting features including the plotting of points, lines, circles, and polygons.
This graph shows different pressure curves for powders with different burn rates. The leftmost graph is the same as the large graph above. The middle graph shows a powder with a 25% faster burn rate, and the rightmost graph shows a powder with a 20% slower burn rate. Energy is the ability to do work on an object. Work is force applied over a ...
Solving (1) is an elementary differential equation, thus the steps leading to a unique solution for v x and, subsequently, x will not be enumerated. Given the initial conditions v x = v x 0 {\displaystyle v_{x}=v_{x0}} (where v x0 is understood to be the x component of the initial velocity) and x = 0 {\displaystyle x=0} for t = 0 {\displaystyle ...
We consider the following example of envelope in motion. Suppose at initial height 0, one casts a projectile into the air with constant initial velocity v but different elevation angles θ. Let x be the horizontal axis in the motion surface, and let y denote the vertical axis.
The five example models down to 1,200 m (1,312 yd) all predict supersonic Mach 1.2 + projectile velocities and total drop differences within a 51 cm (20.1 in) bandwidth. In the transonic flight regime at 1,500 m (1,640 yd) the models predict projectile velocities around Mach 1.0 to Mach 1.1 and total drop differences within a much larger 150 cm ...