Search results
Results from the WOW.Com Content Network
Although nearly 100% sulfuric acid solutions can be made, the subsequent loss of SO 3 at the boiling point brings the concentration to 98.3% acid. The 98.3% grade, which is more stable in storage, is the usual form of what is described as "concentrated sulfuric acid".
The first and faster [citation needed] process is the removal of hydrogen and oxygen as units of water by the concentrated sulfuric acid. This occurs because hydration of concentrated sulfuric acid is strongly thermodynamically favorable, with a standard enthalpy of reaction of −880 kJ/mol.
This group is determined by adding the salt in water and then adding dilute hydrochloric acid (to make the medium acidic) followed by hydrogen sulfide gas. Usually it is done by passing hydrogen sulfide over the test tube for detection of 1st group cations. If it forms a reddish-brown or black precipitate then Bi 3+, Cu 2+, Hg 2+ or Pb 2+ is ...
The sodium fusion test, or Lassaigne's test, is used in elemental analysis for the qualitative determination of the presence of foreign elements, namely halogens, nitrogen, and sulfur, in an organic compound. It was developed by J. L. Lassaigne. [1] The test involves heating the sample with sodium metal, "fusing" it with the sample. A variety ...
Nitric acid: highly corrosive and toxic strong acid; used for the production of fertilizers, production of explosives, and as a component of aqua regia, as well as mixed acid for nitration of aromatic compounds Osmium tetroxide: in organic synthesis, is widely used to oxidise alkenes to the vicinal diols Oxalyl chloride
It is slightly soluble in water and acts as a weak acid (pK a = 6.9 in 0.01–0.1 mol/litre solutions at 18 °C), giving the hydrosulfide ion HS −. Hydrogen sulfide and its solutions are colorless. When exposed to air, it slowly oxidizes to form elemental sulfur, which is not soluble in water. The sulfide anion S 2− is not formed in aqueous ...
Specific gravity is defined as the density of the solvent divided by the density of water at the same temperature. As such, specific gravity is a unitless value. It readily communicates whether a water-insoluble solvent will float (SG < 1.0) or sink (SG > 1.0) when mixed with water.
The change in chemical potential of a solvent when a solute is added explains why boiling point elevation takes place. The boiling point elevation is a colligative property, which means that boiling point elevation is dependent on the number of dissolved particles but not their identity.