Search results
Results from the WOW.Com Content Network
Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2] Non-covalent interactions [4] are critical in maintaining the three-dimensional structure of large molecules, such as proteins and nucleic acids.
Measurably irreversible covalent bonding between a ligand and target molecule is atypical in biological systems. In contrast to the definition of ligand in metalorganic and inorganic chemistry, in biochemistry it is ambiguous whether the ligand generally binds at a metal site, as is the case in hemoglobin. In general, the interpretation of ...
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that ...
Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.
Irreversible covalent – a chemical bond is formed in which the product is thermodynamically much more stable than the reactants such that the reverse reaction does not take place. Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. [2]
In non-covalent interactions there is no sharing of electrons like in covalent interactions or bonds. Non-covalent binding may depend on hydrogen bonds , hydrophobic forces , van der Waals forces , π-π interactions , electrostatic interactions in which no electrons are shared between the two or more involved molecules. [ 4 ]
Electrostatic interactions, hydrogen bonds, van der Waals forces, and hydrophobic interactions are all known to be involved depending on the interaction sites. [7] [8] Non-covalent bonds between antibody and antigen can also be mediated by interfacial water molecules. Such indirect bonds can contribute to the phenomenon of cross-reactivity, i.e ...
MAs of macromolecules are held in their defined forms by non-covalent intermolecular interactions (rather than covalent bonds), and can be in either non-repeating structures (e.g., as in the ribosome (image) and cell membrane architectures), or in repeating linear, circular, spiral, or other patterns (e.g., as in actin filaments and the ...