enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.

  3. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then

  4. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The Leibniz formula for the determinant of a 3 × 3 matrix is the ... and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to ...

  5. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    The theorem also gives a formula for the derivative of the inverse function. In multivariable calculus, this theorem can be generalized to any continuously differentiable, vector-valued function whose Jacobian determinant is nonzero at a point in its domain, giving a formula for the Jacobian matrix of the inverse.

  6. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    However, the Levi-Civita symbol is a pseudotensor because under an orthogonal transformation of Jacobian determinant −1, for example, a reflection in an odd number of dimensions, it should acquire a minus sign if it were a tensor. As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor.

  7. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  8. Carl Gustav Jacob Jacobi - Wikipedia

    en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

    He was also one of the early founders of the theory of determinants. [9] In particular, he invented the Jacobian determinant formed from the n 2 partial derivatives of n given functions of n independent variables, which plays an important part in changes of variables in multiple integrals, and in many analytical investigations. [3]

  9. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    The resultant matrix is called the Jacobian matrix. ... (r, θ) are the curvilinear coordinates, and the Jacobian determinant of the transformation (r,θ) → ...