Search results
Results from the WOW.Com Content Network
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:
Many of the representations, both finite-dimensional and infinite-dimensional, are important in theoretical physics. Representations appear in the description of fields in classical field theory, most importantly the electromagnetic field, and of particles in relativistic quantum mechanics, as well as of both particles and quantum fields in quantum field theory and of various objects in string ...
Lorentz generators can be added together, or multiplied by real numbers, to obtain more Lorentz generators. In other words, the set of all Lorentz generators V = { ζ ⋅ K + θ ⋅ J } {\displaystyle V=\{{\boldsymbol {\zeta }}\cdot \mathbf {K} +{\boldsymbol {\theta }}\cdot \mathbf {J} \}} together with the operations of ordinary matrix ...
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
The prime examples of such four-vectors are the four-position and four-momentum of a particle, and for fields the electromagnetic tensor and stress–energy tensor. The fact that these objects transform according to the Lorentz transformation is what mathematically defines them as vectors and tensors; see tensor for a definition.
One example is the bold blue line segment, which lies inside the blue band representing the garage, and which represents the ladder at a time when it is fully inside the garage. In the frame of the ladder, however, sets of simultaneous events lie on lines parallel to the x' axis; the ladder at any specific time is therefore represented by a ...
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos.It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.
The Lorentz rule was proposed by H. A. Lorentz in 1881: [5] = + The Lorentz rule is only analytically correct for hard sphere systems. Intuitively, since , loosely reflect the radii of particle i and j respectively, their averages can be said to be the effective radii between the two particles at which point repulsive interactions become severe.