Search results
Results from the WOW.Com Content Network
Zero to the power of zero, denoted as 0 0, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra, 0 0 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents.
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
For example, from the differential equation definition, e x e −x = 1 when x = 0 and its derivative using the product rule is e x e −x − e x e −x = 0 for all x, so e x e −x = 1 for all x. From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity.
This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1] It is therefore useful to have multiple ways to define (or characterize) it.
Many texts write φ = tan −1 y / x instead of φ = atan2(y, x), but the first equation needs adjustment when x ≤ 0. This is because for any real x and y, not both zero, the angles of the vectors (x, y) and (−x, −y) differ by π radians, but have the identical value of tan φ = y / x .
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Get the latest news, politics, sports, and weather updates on AOL.com.