Search results
Results from the WOW.Com Content Network
Lithium (from Ancient Greek λίθος (líthos) 'stone') is a chemical element; it has symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid element.
Isotopes of lithium, beryllium, and boron are less strongly bound than helium, as shown by their increasing mass-to-mass number ratios. At carbon, the ratio of mass (in daltons) to mass number is defined as 1, and after carbon it becomes less than one until a minimum is reached at iron-56 (with only slightly higher values for iron-58 and nickel ...
A lithium atom is an atom of the chemical element lithium. Stable lithium is composed of three electrons bound by the electromagnetic force to a nucleus containing three protons along with either three or four neutrons , depending on the isotope , held together by the strong force .
The alkali metals all have the same crystal structure (body-centred cubic) [10] and thus the only relevant factors are the number of atoms that can fit into a certain volume and the mass of one of the atoms, since density is defined as mass per unit volume. The first factor depends on the volume of the atom and thus the atomic radius, which ...
Each distinct atomic number therefore corresponds to a class of atom: these classes are called the chemical elements. [5] The chemical elements are what the periodic table classifies and organizes. Hydrogen is the element with atomic number 1; helium, atomic number 2; lithium, atomic number 3; and so on.
Atomicity is the total number of atoms present in a molecule of an element. For example, each molecule of oxygen (O 2) is composed of two oxygen atoms. Therefore, the atomicity of oxygen is 2. [1] In older contexts, atomicity is sometimes equivalent to valency. Some authors also use the term to refer to the maximum number of valencies observed ...
{{Infobox element}}; labels & notes: (Image) GENERAL PROPERTIES Name Symbol Pronunciation (data central) Alternative name(s) Allotropes Appearance <element> IN THE PERIODIC TABLE Periodic table Atomic number Standard atomic weight (data central) Element category (also header bg color) (sets header bg color, over 'series='-color) Group Period ...
Carbon forms covalent bonds with other non-metals with an oxidation state of −4, −2, +2 or +4. [25] Carbon is the fourth most abundant element in the universe by mass after hydrogen, helium and oxygen [31] and is the second most abundant element in the human body by mass after oxygen, [32] the third most abundant by number of atoms. [33]