Search results
Results from the WOW.Com Content Network
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
In computer programming, an iterator is an object that progressively provides access to each item of a collection, in order. [1] [2] [3]A collection may provide multiple iterators via its interface that provide items in different orders, such as forwards and backwards.
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation ( set comprehension ) as distinct from the use of map and filter functions.
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement.
For example, a vector would have a random-access iterator, but a list only a bidirectional iterator. Iterators are the major feature that allow the generality of the STL. For example, an algorithm to reverse a sequence can be implemented using bidirectional iterators, and then the same implementation can be used on lists, vectors and deques.
Java has had a standard interface for implementing iterators since its early days, and since Java 5, the "foreach" construction makes it easy to loop over objects that provide the java.lang.Iterable interface. (The Java collections framework and other collections frameworks, typically provide iterators for all collections.)
For loop illustration, from i=0 to i=2, resulting in data1=200. A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax, there are many differences in how these statements work and the level of expressiveness they support.
Java only enforces type information at compile-time. After the type information is verified at compile-time, the type information is discarded, and at run-time, the type information will not be available. [6] Examples of non-reifiable types include List<T> and List<String>, where T is a generic formal parameter. [6]