enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.

  3. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The bulk modulus (K) describes volumetric elasticity, or the tendency of an object to deform in all directions when uniformly loaded in all directions; it is defined as volumetric stress over volumetric strain, and is the inverse of compressibility. The bulk modulus is an extension of Young's modulus to three dimensions.

  4. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    The elastic properties can be well-characterized by the Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus or they may be described by the Lamé parameters. Young's modulus [ edit ]

  5. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .

  6. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    For instance, Young's modulus applies to extension/compression of a body, whereas the shear modulus applies to its shear. [1] Young's modulus and shear modulus are only for solids, whereas the bulk modulus is for solids, liquids, and gases. The elasticity of materials is described by a stress–strain curve, which shows the relation between ...

  7. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    The elastic modulus of a material is not the same as the stiffness of a component made from that material. Elastic modulus is a property of the constituent material; stiffness is a property of a structure or component of a structure, and hence it is dependent upon various physical dimensions that describe that component.

  8. Rule of mixtures - Wikipedia

    en.wikipedia.org/wiki/Rule_of_mixtures

    The actual elastic modulus lies between the curves. In materials science , a general rule of mixtures is a weighted mean used to predict various properties of a composite material . [ 1 ] [ 2 ] [ 3 ] It provides a theoretical upper- and lower-bound on properties such as the elastic modulus , ultimate tensile strength , thermal conductivity ...

  9. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower yield point. The appearance of the upper yield point is associated with the pinning of dislocations in the system.