Search results
Results from the WOW.Com Content Network
(Br 2) 265.8 K (−7.2 °C ... Bromine is a chemical element; it has symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that ...
Bromine (35 Br) has two stable isotopes, 79 Br and 81 Br, and 35 known radioisotopes, the most stable of which is 77 Br, with a half-life of 57.036 hours.. Like the radioactive isotopes of iodine, radioisotopes of bromine, collectively radiobromine, can be used to label biomolecules for nuclear medicine; for example, the positron emitters 75 Br and 76 Br can be used for positron emission ...
Atomic number (Z): 35: Group: group 17 (halogens) Period: period 4: Block p-block Electron configuration [] 3d 10 4s 2 4pElectrons per shell: 2, 8, 18, 7: Physical properties; Phase at STP ...
[2] [3] Technetium and promethium (atomic numbers 43 and 61, respectively [a]) and all the elements with an atomic number over 82 only have isotopes that are known to decompose through radioactive decay. No undiscovered elements are expected to be stable; therefore, lead is considered the heaviest stable element.
76 Br synth 16.2 h β ... This infobox contains the table of § Main isotopes, and the § Standard atomic weight. For example, {{Infobox uranium isotopes}} ...
The mass number (symbol A, from the German word: Atomgewicht, "atomic weight"), [1] also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approximately equal to the atomic (also known as isotopic) mass of the atom expressed in atomic mass units.
The configurations of the elements in this table are written starting with [Og] because oganesson is expected to be the last prior element with a closed-shell (inert gas) configuration, 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 5f 14 6s 2 6p 6 6d 10 7s 2 7p 6. Similarly, the [172] in the configurations for elements ...
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.