enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).

  3. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    Tait–Bryan angles, following z-y′-x″ (intrinsic rotations) convention, are also known as nautical angles, because they can be used to describe the orientation of a ship or aircraft, or Cardan angles, after the Italian mathematician and physicist Gerolamo Cardano, who first described in detail the Cardan suspension and the Cardan joint.

  4. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    The angle rotation sequence is ψ, θ, φ. Note that in this case ψ > 90° and θ is a negative angle. Similarly for Euler angles, we use the Tait Bryan angles (in terms of flight dynamics): Heading – : rotation about the Z-axis; Pitch – : rotation about the new Y-axis

  5. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The axis–angle representation is equivalent to the more concise rotation vector, also called the Euler vector (not to be confused with a vector of Euler angles). In this case, both the rotation axis and the angle are represented by a vector codirectional with the rotation axis whose length is the rotation angle θ , θ = θ e . {\displaystyle ...

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Thus, the compounded rotations of Euler angles become a series of equivalent rotations in the original fixed frame. While rotors in geometric algebra work almost identically to quaternions in three dimensions, the power of this formalism is its generality: this method is appropriate and valid in spaces with any number of dimensions.

  8. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two ...

  9. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    Euler angles; Quaternions; The various Euler angles relating the three reference frames are important to flight dynamics. Many Euler angle conventions exist, but all of the rotation sequences presented below use the z-y'-x" convention. This convention corresponds to a type of Tait-Bryan angles, which are commonly referred to as Euler angles ...