enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.

  3. Wavefront - Wikipedia

    en.wikipedia.org/wiki/Wavefront

    The plane wavefront is a good model for a surface-section of a very large spherical wavefront; for instance, sunlight strikes the earth with a spherical wavefront that has a radius of about 150 million kilometers (1 AU). For many purposes, such a wavefront can be considered planar over distances of the diameter of Earth.

  4. Huygens principle of double refraction - Wikipedia

    en.wikipedia.org/wiki/Huygens_principle_of...

    The new wavefront for the o-ray will be tangent to the spherical wavelets, while the new wavefront for the e-ray will be tangent to the ellipsoidal wavelets. Each plane wavefront propagates straight ahead but with different velocities: V 0 for the o-ray and V e for the e-ray. The direction of the k-vector is always perpendicular to the ...

  5. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave. Analytical solution of this expression is still only possible in rare cases.

  6. Horn antenna - Wikipedia

    en.wikipedia.org/wiki/Horn_antenna

    The waves travel down a horn as spherical wavefronts, with their origin at the apex of the horn, a point called the phase center. The pattern of electric and magnetic fields at the aperture plane at the mouth of the horn, which determines the radiation pattern, is a scaled-up reproduction of the fields in the waveguide.

  7. Surface wave - Wikipedia

    en.wikipedia.org/wiki/Surface_wave

    The Sommerfeld–Zenneck wave or Zenneck wave is a non-radiative guided electromagnetic wave that is supported by a planar or spherical interface between two homogeneous media having different dielectric constants. This surface wave propagates parallel to the interface and decays exponentially vertical to it, a property known as evanescence.

  8. Wave interference - Wikipedia

    en.wikipedia.org/wiki/Wave_interference

    In wavefront-division systems, the wave is divided in space—examples are Young's double slit interferometer and Lloyd's mirror. Interference can also be seen in everyday phenomena such as iridescence and structural coloration. For example, the colours seen in a soap bubble arise from interference of light reflecting off the front and back ...

  9. Optical aberration - Wikipedia

    en.wikipedia.org/wiki/Optical_aberration

    A complex, aberrated wavefront profile may be curve-fitted with Zernike polynomials to yield a set of fitting coefficients that individually represent different types of aberrations. These Zernike coefficients are linearly independent, thus individual aberration contributions to an overall wavefront may be isolated and quantified separately.