enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pólya conjecture - Wikipedia

    en.wikipedia.org/wiki/Pólya_conjecture

    In number theory, the Pólya conjecture (or Pólya's conjecture) stated that "most" (i.e., 50% or more) of the natural numbers less than any given number have an odd number of prime factors. The conjecture was set forth by the Hungarian mathematician George Pólya in 1919, [ 1 ] and proved false in 1958 by C. Brian Haselgrove .

  3. Pólya enumeration theorem - Wikipedia

    en.wikipedia.org/wiki/Pólya_enumeration_theorem

    The Polya enumeration theorem translates the recursive structure of rooted ternary trees into a functional equation for the generating function F(t) of rooted ternary trees by number of nodes. This is achieved by "coloring" the three children with rooted ternary trees, weighted by node number, so that the color generating function is given by f ...

  4. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    As reformulated, it became the "paving conjecture" for Euclidean spaces, and then a question on random polynomials, in which latter form it was solved affirmatively. 2015: Jean Bourgain, Ciprian Demeter, and Larry Guth: Main conjecture in Vinogradov's mean-value theorem: analytic number theory: Bourgain–Demeter–Guth theorem, ⇐ decoupling ...

  5. Mathematics and Plausible Reasoning - Wikipedia

    en.wikipedia.org/wiki/Mathematics_and_plausible...

    Polya begins Volume I with a discussion on induction, not mathematical induction, but as a way of guessing new results.He shows how the chance observations of a few results of the form 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, etc., may prompt a sharp mind to formulate the conjecture that every even number greater than 4 can be represented as the sum of two odd prime numbers.

  6. Problems and Theorems in Analysis - Wikipedia

    en.wikipedia.org/wiki/Problems_and_Theorems_in...

    [4]: 23–24 The specific topics treated bear witness to the special interests of Pólya (Descartes' rule of signs, Pólya's enumeration theorem), Szegö (polynomials, trigonometric polynomials, and his own work in orthogonal polynomials) and sometimes both (the zeros of polynomials and analytic functions, complex analysis in general).

  7. Hilbert–Pólya conjecture - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Pólya_conjecture

    The earliest published statement of the conjecture seems to be in Montgomery (1973). [1] [2] David Hilbert did not work in the central areas of analytic number theory, but his name has become known for the Hilbert–Pólya conjecture due to a story told by Ernst Hellinger, a student of Hilbert, to André Weil. Hellinger said that Hilbert ...

  8. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    Cramér's conjecture; Riemann hypothesis. Critical line theorem; Hilbert–Pólya conjecture; Generalized Riemann hypothesis; Mertens function, Mertens conjecture, Meissel–Mertens constant; De Bruijn–Newman constant; Dirichlet character; Dirichlet L-series. Siegel zero; Dirichlet's theorem on arithmetic progressions. Linnik's theorem ...

  9. C. Brian Haselgrove - Wikipedia

    en.wikipedia.org/wiki/C._Brian_Haselgrove

    Colin Brian Haselgrove (26 September 1926 – 27 May 1964) was an English mathematician who is best known for his disproof of the Pólya conjecture in 1958. [1] Haselgrove was educated at Blundell's School and from there won a scholarship to King's College, Cambridge. He obtained his Ph.D., which was supervised by Albert Ingham, from Cambridge ...