enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ArviZ - Wikipedia

    en.wikipedia.org/wiki/ArviZ

    ArviZ also provides a common data structure for manipulating and storing data commonly arising in Bayesian analysis, like posterior samples or observed data. ArviZ is an open source project, developed by the community and is an affiliated project of NumFOCUS.

  3. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.

  4. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [16] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.

  5. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    Engine for Likelihood-Free Inference. ELFI is a statistical software package written in Python for Approximate Bayesian Computation (ABC), also known e.g. as likelihood-free inference, simulator-based inference, approximative Bayesian inference etc. [83] ABCpy: Python package for ABC and other likelihood-free inference schemes.

  6. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  7. Bayesian vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_vector_autoregression

    This type model can be estimated with Eviews, Stata, Python [8] or R [9] Statistical Packages. Recent research has shown that Bayesian vector autoregression is an appropriate tool for modelling large data sets. [10]

  8. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    To determine whether a causal relation is identified from an arbitrary Bayesian network with unobserved variables, one can use the three rules of "do-calculus" [2] [5] and test whether all do terms can be removed from the expression of that relation, thus confirming that the desired quantity is estimable from frequency data. [6] Using a ...

  9. Dynamic Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Dynamic_Bayesian_network

    Dynamic Bayesian Network composed by 3 variables. Bayesian Network developed on 3 time steps. Simplified Dynamic Bayesian Network. All the variables do not need to be duplicated in the graphical model, but they are dynamic, too. A dynamic Bayesian network (DBN) is a Bayesian network (BN) which relates variables to each other over adjacent time ...