Search results
Results from the WOW.Com Content Network
An ylide (/ ˈ ɪ l aɪ d /) [1] or ylid (/ ˈ ɪ l ɪ d /) is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons.
Pyridinium refers to the cation [C 5 H 5 NH] +. It is the conjugate acid of pyridine . Many related cations are known involving substituted pyridines, e.g. picolines, lutidines, collidines.
The first reaction is the formation of the N-2,4-dinitrophenyl-pyridinium salt (2). This salt is typically isolated and purified by recrystallization. The formation of the DNP-pyridinium salt. Upon heating a primary amine with the N-2,4-dinitrophenyl-pyridinium salt (2), the addition
Zincke aldehydes, or 5-aminopenta-2,4-dienals, are the product of the reaction of a pyridinium salt with two equivalents of any secondary amine, followed by basic hydrolysis. Using secondary amines (as opposed to primary amines) the Zincke reaction takes on a different shape forming Zincke aldehydes in which the pyridine ring is ring-opened ...
1,3-dicarbonyl compounds have also been shown to be viable starting materials in place of the α-pyridinium methyl ketone salts. [7] For example, treatment of 1,3-diketone 14 with base in ethanol followed by ammonium acetate, acetic acid, the corresponding enone and a Lewis acid yields 3-acyltriarylpyridines of the form 15 .
However, a few examples exist of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition reactions of thiocarbonyl ylides, [6] and nitrile oxides [7] The generic mechanism of a 1,3-dipolar cycloaddition between a dipole and a dipolarophile to give a five-membered heterocycle, through a six-electron transition state.
The persistent radical effect (PRE) in chemistry describes and explains the selective product formation found in certain free-radical cross-reactions. In these type of reactions, different radicals compete in secondary reactions. The so-called persistent (long-lived) radicals do not self-terminate and only react in cross-couplings.
Chain propagation: A radical reacts with a non-radical to produce a new radical species; Chain termination: Two radicals react with each other to create a non-radical species; In a free-radical addition, there are two chain propagation steps. In one, the adding radical attaches to a multiply-bonded precursor to give a radical with lesser bond ...