Search results
Results from the WOW.Com Content Network
Being a G-delta set—i.e., a countable intersection of open subsets—in a complete metric space, the space of irrationals is completely metrizable: that is, there is a metric on the irrationals inducing the same topology as the restriction of the Euclidean metric, but with respect to which the irrationals are complete.
The powers of two whose exponents are powers of two, , form an irrationality sequence.However, although Sylvester's sequence. 2, 3, 7, 43, 1807, 3263443, ... (in which each term is one more than the product of all previous terms) also grows doubly exponentially, it does not form an irrationality sequence.
The irrationality exponent or Liouville–Roth irrationality measure is given by setting (,) =, [1] a definition adapting the one of Liouville numbers — the irrationality exponent () is defined for real numbers to be the supremum of the set of such that < | | < is satisfied by an infinite number of coprime integer pairs (,) with >.
Rational numbers are algebraic numbers that satisfy a polynomial of degree 1, while quadratic irrationals are algebraic numbers that satisfy a polynomial of degree 2. For both these sets of numbers we have a way to construct a sequence of natural numbers (a n) with the property that each sequence gives a unique real number and such that this real number belongs to the corresponding set if and ...
The Minkowski sum of two sets and of real numbers is the set + := {+:,} consisting of all possible arithmetic sums of pairs of numbers, one from each set. The infimum and supremum of the Minkowski sum satisfy, if A ≠ ∅ ≠ B {\displaystyle A\neq \varnothing \neq B} inf ( A + B ) = ( inf A ) + ( inf B ) {\displaystyle \inf(A+B)=(\inf A ...
Quadratic irrationals are used in field theory to construct field extensions of the field of rational numbers Q. Given the square-free integer c, the augmentation of Q by quadratic irrationals using √ c produces a quadratic field Q(√ c). For example, the inverses of elements of Q(√ c) are of the same form as the above algebraic numbers:
The idea is to then analyze the scaled-up difference (here denoted x) between the series representation of e and its strictly smaller b-th partial sum, which approximates the limiting value e. By choosing the scale factor to be the factorial of b , the fraction a / b and the b -th partial sum are turned into integers , hence x must be a ...
From the point of view of descriptive set theory, Baire spaces are more flexible than the real line in the following sense. Because the real line is path-connected, so is every continuous image of a real line. In contrast, every Polish space is the continuous image of Baire space. This difference makes the real line "slightly awkward to use ...