Search results
Results from the WOW.Com Content Network
Bond energy and bond-dissociation energy are measures of the binding energy between the atoms in a chemical bond. It is the energy required to disassemble a molecule into its constituent atoms. This energy appears as chemical energy, such as that released in chemical explosions, the burning of chemical fuel and biological processes. Bond ...
The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding.
The bond energy for H 2 O is the average energy required to break each of the two O–H bonds in sequence: Although the two bonds are the equivalent in the original symmetric molecule, the bond-dissociation energy of an oxygen–hydrogen bond varies slightly depending on whether or not there is another hydrogen atom bonded to the oxygen atom.
The pair of shared electrons forms a single covalent bond. The electron density of these two bonding electrons in the region between the two atoms increases from the density of two non-interacting H atoms. Two p-orbitals forming a pi-bond. A double bond has two shared pairs of electrons, one in a sigma bond and one in a pi bond with electron ...
The strong bonding of metals in liquid form demonstrates that the energy of a metallic bond is not highly dependent on the direction of the bond; this lack of bond directionality is a direct consequence of electron delocalization, and is best understood in contrast to the directional bonding of covalent bonds. The energy of a metallic bond is ...
Lewis and MO diagrams of an individual 2e-bond and 3e-bond. Bonds with one or three electrons can be found in radical species, which have an odd number of electrons. The simplest example of a 1-electron bond is found in the dihydrogen cation, H + 2. One-electron bonds often have about half the bond energy of a 2-electron bond, and are therefore ...
An atom with one or two electrons fewer than a closed shell is reactive due to its tendency either to gain the missing valence electrons and form a negative ion, or else to share valence electrons and form a covalent bond. Similar to a core electron, a valence electron has the ability to absorb or release energy in the form of a photon.
Ionic bonds have high bond energy. Bond energy is the mean amount of energy required to break the bond in the gaseous state. Most ionic compounds exist in the form of a crystal structure, in which the ions occupy the corners of the crystal. Such a structure is called a crystal lattice.