Search results
Results from the WOW.Com Content Network
The subject codes so listed are used by the two major reviewing databases, Mathematical Reviews and Zentralblatt MATH. This list has some items that would not fit in such a classification, such as list of exponential topics and list of factorial and binomial topics , which may surprise the reader with the diversity of their coverage.
The following list is meant to serve as a repository for compiling a list of such ideas. The idea of the Pythagoreans that all numbers can be expressed as a ratio of two whole numbers . This was disproved by one of Pythagoras ' own disciples, Hippasus , who showed that the square root of two is what we today call an irrational number .
Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras.The phrase abstract algebra was coined at the turn of the 20th century to distinguish this area from what was normally referred to as algebra, the study of the rules for manipulating formulae and algebraic expressions involving unknowns and ...
Chemistry; Chemical element; Molecule; Periodic table; Salt (chemistry) Elements. Actinium; Aluminium; Americium; Antimony; Argon; Arsenic; Astatine; Barium ...
A diagram of a wheel, as the real projective line with a point at nullity (denoted by ⊥). A wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring.
This is a list of multivariable calculus topics. See also multivariable calculus, vector calculus, list of real analysis topics, list of calculus topics. Closed and exact differential forms; Contact (mathematics) Contour integral; Contour line; Critical point (mathematics) Curl (mathematics) Current (mathematics) Curvature; Curvilinear ...
This is a list of recreational number theory topics (see number theory, recreational mathematics). Listing here is not pejorative: many famous topics in number theory have origins in challenging problems posed purely for their own sake. See list of number theory topics for pages dealing with aspects of number theory with more consolidated theories.
This is a list of mathematical topics in classical mechanics, by Wikipedia page. See also list of variational topics , correspondence principle . Newtonian physics