Search results
Results from the WOW.Com Content Network
In organic chemistry, a cyanohydrin reaction is an organic reaction in which an aldehyde (−CH=O) or ketone (>C=O) reacts with a cyanide anion (N≡C −) or a nitrile (−C≡N) to form a cyanohydrin (>C(OH)C≡N).
In the laboratory, this liquid serves as a source of HCN, which is inconveniently volatile. [4] Thus, acetone cyanohydrin can be used for the preparation of other cyanohydrins, for the transformation of HCN to Michael acceptors, and for the formylation of arenes. Treatment of this cyanohydrin with lithium hydride affords anhydrous lithium cyanide:
Acetone cyanohydrin is an intermediate en route to methyl methacrylate. [6] Treatment with sulfuric acid gives the sulfate ester of the methacrylamide, [clarification needed] methanolysis of which gives ammonium bisulfate and methyl methacrylate. [7] It is used as a surrogate in place of HCN, as illustrated by its use as a precursor to lithium ...
LiCN is produced from the reaction of lithium hydroxide and hydrogen cyanide. A laboratory-scale preparation uses acetone cyanohydrin as a surrogate for HCN: [5] (CH 3) 2 C(OH)CN + LiH → (CH 3) 2 CO + LiCN + H 2
The treatment of equine lameness is a complex subject. Lameness in horses has a variety of causes, and treatment must be tailored to the type and degree of injury, as well as the financial capabilities of the owner. Treatment may be applied locally, systemically, or intralesionally, and the strategy for treatment may change as healing progresses.
Glycolonitrile, also called hydroxyacetonitrile or formaldehyde cyanohydrin, is the organic compound with the formula HOCH 2 CN. It is the simplest cyanohydrin and it is derived from formaldehyde . [ 3 ]
Equine gastric ulcer syndrome (EGUS) is a common cause of colic and decreased performance in horses. Horses form ulcers in the mucosa of the stomach, leading to pain, decreased appetite, weight loss, and behavioral changes. Treatment generally involves reducing acid production of the stomach and dietary management.
Cyanogen is typically generated from cyanide compounds. One laboratory method entails thermal decomposition of mercuric cyanide: . 2 Hg(CN) 2 → (CN) 2 + Hg 2 (CN) 2 Or, one can combine solutions of copper(II) salts (such as copper(II) sulfate) with cyanides; an unstable copper(II) cyanide is formed which rapidly decomposes into copper(I) cyanide and cyanogen.