Search results
Results from the WOW.Com Content Network
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields , magnetic field gradients, and radio waves to form images of the organs in the body.
In analysis of the fetal brain, MRI provides more information about gyration than ultrasound. [24] MRI is sensitive for the detection of brain abscess. [25] A number of different imaging modalities or sequences can be used with imaging the nervous system: T 1-weighted (T1W) images: Cerebrospinal fluid is dark.
Diffusion imaging is an MRI method that produces in vivo magnetic resonance images of biological tissues sensitized with the local characteristics of molecular diffusion, generally water (but other moieties can also be investigated using MR spectroscopic approaches). [15] MRI can be made sensitive to the motion of molecules.
This finding has an important implication for the interpretation of BOLD fMRI data where this high baseline activity is generally ignored and response to the task is shown as independent of the baseline activity. 13 C MRS studies indicate that this approach can misjudge and even completely miss the brain activity induced by the task. [37]
Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...
A magnetic resonance imaging instrument (MRI scanner), or "nuclear magnetic resonance imaging" scanner as it was originally known, uses powerful magnets to polarize and excite hydrogen nuclei (i.e., single protons) of water molecules in human tissue, producing a detectable signal which is spatially encoded, resulting in images of the body. [5]
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.
Resolution: Medical MRI resolution is typically about 1 mm; the desired resolution of MRM is 100 μm or smaller to 10 μm, comparable with histology. Specimen size: Medical MRI machines are designed so that a patient may fit inside. MRM chambers are usually small, typically less than 1 cm 3 for the imaging of rats, mice and rodents. BrukerBio ...