enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /

  3. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  4. PS Power and Sample Size - Wikipedia

    en.wikipedia.org/wiki/PS_Power_and_Sample_Size

    Matched or independent study designs may be used. Power, sample size, and the detectable alternative hypothesis are interrelated. The user specifies any two of these three quantities and the program derives the third. A description of each calculation, written in English, is generated and may be copied into the user's documents.

  5. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.

  6. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .

  7. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    In modern terms, he rejected the null hypothesis of equally likely male and female births at the p = 1/2 82 significance level. Laplace considered the statistics of almost half a million births. The statistics showed an excess of boys compared to girls. [5] He concluded by calculation of a p-value that the excess was a real, but unexplained ...

  8. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail.. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic.

  9. Sign test - Wikipedia

    en.wikipedia.org/wiki/Sign_test

    Since the test statistic is expected to follow a binomial distribution, the standard binomial test is used to calculate significance. The normal approximation to the binomial distribution can be used for large sample sizes, m > 25. [4] The left-tail value is computed by Pr(W ≤ w), which is the p-value for the alternative H 1: p < 0.50.