enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The exclusion of the expression (the case =) from our scheme of exponentiation is due to the fact that the function (,) = has no limit at (0,0), since approaches 1 as x approaches 0, while approaches 0 as y approaches 0. Thus, it would be problematic to ascribe any particular value to it, as the value would contradict one of the two cases ...

  3. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n. One proof that e is irrational uses a special case of this formula.) Inverse of logarithm integral.

  4. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    For example, from the differential equation definition, e x ex = 1 when x = 0 and its derivative using the product rule is e x exe x ex = 0 for all x, so e x ex = 1 for all x. From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) {\textstyle \arctan(y,x)} .

  6. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    2.1 Proof from derivative definition and limit properties. 2.2 Proof using implicit differentiation. ... The quotient rule states that the derivative of h(x) is ...

  7. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    5.1 Proof for Taylor's theorem in one real variable. ... is some number between 0 and x. Since e x is increasing by ... repeated derivatives of ...

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of ′ is the second derivative, denoted as ⁠ ″ ⁠, and the derivative of ″ is the third derivative, denoted as ⁠ ‴ ⁠. By continuing this process, if it exists, the ⁠ n {\displaystyle n} ⁠ th derivative is the derivative of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ th derivative or the derivative of order ...