enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clar's rule - Wikipedia

    en.wikipedia.org/wiki/Clar's_rule

    The anthracene molecule allows three resonance structures, each with a circle in one ring and two sets of double bonds in the other two. Following rule 4 above, anthracene is better described by a superposition of these three equivalent structures, and an arrow is drawn to indicate the presence of a migrating π-sextet.

  3. Nucleic acid structure determination - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure...

    Some 1,2-dicarbonyl compounds are able to react with single-stranded guanine (G) at N1 and N2, forming a five-membered ring adduct at the Watson-Crick face. 1,1-Dihydroxy-3-ethoxy-2-butanone, also known as kethoxal, has a structure related to 1,2-dicarbonyls, and was the first in this category used extensively for the chemical probing of RNA ...

  4. Natural resonance theory - Wikipedia

    en.wikipedia.org/wiki/Natural_Resonance_Theory

    The NBOs for a resonance structure formula can then be, subsequently, calculated from the CHOOSE option. Operationally, there are three ways in which alternative resonance structures may be generated: (1) from the LEWIS option, considering the Wiberg bond indices ; (2) from the delocalization list; (3) specified by the user.

  5. Resonance (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Resonance_(chemistry)

    Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.

  6. Chemical structure - Wikipedia

    en.wikipedia.org/wiki/Chemical_structure

    The methods by which one can determine the structure of a molecule is called structural elucidation.These methods include: concerning only connectivity of the atoms: spectroscopies such as nuclear magnetic resonance (proton and carbon-13 NMR), various methods of mass spectrometry (to give overall molecular mass, as well as fragment masses).Techniques such as absorption spectroscopy and the ...

  7. Nuclear magnetic resonance spectroscopy of nucleic acids

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Nucleic acid NMR is the use of nuclear magnetic resonance spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA.It is useful for molecules of up to 100 nucleotides, and as of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy.

  8. Nuclear magnetic resonance spectroscopy of proteins

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Protein NMR utilizes multidimensional nuclear magnetic resonance experiments to obtain information about the protein. Ideally, each distinct nucleus in the molecule experiences a distinct electronic environment and thus has a distinct chemical shift by which it can be recognized. However, in large molecules such as proteins the number of ...

  9. Mass spectral interpretation - Wikipedia

    en.wikipedia.org/wiki/Mass_spectral_interpretation

    [1] [2] Mass spectra is a plot of relative abundance against mass-to-charge ratio. It is commonly used for the identification of organic compounds from electron ionization mass spectrometry. [3] [4] Organic chemists obtain mass spectra of chemical compounds as part of structure elucidation and the analysis is part of many organic chemistry ...