enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    The theorem cannot be applied to this function because it does not satisfy the condition that the function must be differentiable for every x in the open interval. However, when the differentiability requirement is dropped from Rolle's theorem, f will still have a critical number in the open interval ( a , b ) , but it may not yield a ...

  3. Symmetrically continuous function - Wikipedia

    en.wikipedia.org/wiki/Symmetrically_continuous...

    Also, symmetric differentiability implies symmetric continuity, but the converse is not true just like usual continuity does not imply differentiability. The set of the symmetrically continuous functions, with the usual scalar multiplication can be easily shown to have the structure of a vector space over R {\displaystyle \mathbb {R ...

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The translation in the language of neighborhoods of the (,)-definition of continuity leads to the following definition of the continuity at a point: A function f : X → Y {\displaystyle f:X\to Y} is continuous at a point x ∈ X {\displaystyle x\in X} if and only if for any neighborhood V of f ( x ) {\displaystyle f(x)} in Y , there is a ...

  5. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere-differentiable. The Weierstrass function was one of the first fractals studied, although this term was not used until much later. The ...

  6. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...

  7. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when

  8. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...

  9. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...