Search results
Results from the WOW.Com Content Network
Spiders that spin webs typically have three claws, the middle one being small; hunting spiders typically have only two claws. Since they do not have antennae, spiders use specialised and sensitive setae on their legs to pick up scent, sounds, vibrations and air currents. [6] Some spiders, such as the Australian crab spider, do not have claws.
Unlike insects, spiders do not have antennae. ... Various species are known to feed on dead arthropods (scavenging), web silk, and their own shed exoskeletons.
The exoskeleton cannot stretch and thus restricts growth. Arthropods, therefore, replace their exoskeletons by undergoing ecdysis (moulting), or shedding the old exoskeleton, the exuviae, after growing a new one that is not yet hardened. Moulting cycles run nearly continuously until an arthropod reaches full size.
Some spiders such as orb weavers and wolf spiders have spiracles. Ancestrally, spiders have book lungs, not trachea. However, some spiders evolved a tracheal system independently of the tracheal system in insects, which includes independent evolution of the spiracles as well. These spiders retained their book lungs, however, so they have both.
The arthropod exoskeleton is divided into different functional units, each comprising a series of grouped segments; such a group is called a tagma, and the tagmata are adapted to different functions in a given arthropod body. For example, tagmata of insects include the head, which is a fused capsule, the thorax as nearly a fixed capsule, and ...
Perhaps the most famous group of spiders that construct funnel-shaped webs is the Australian funnel-web spiders. There are 36 of them and some are dangerous as they produce a fast-acting and ...
The new, teneral exoskeleton has to accommodate a larger frame than the previous instar, while the spider has had to fit into the previous exoskeleton until it has been shed. This means the spider does not fill out the new exoskeleton completely, so it commonly appears somewhat wrinkled.
There have been numerous studies of learning and memory using nociceptors in the sea hare, Aplysia. [18] [19] [20] Many of these have focused on mechanosensory neurons innervating the siphon and having their somata (bulbous end) in the abdominal ganglion (LE cells). These LE cells display increasing discharge to increasing pressures, with ...