enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is

  3. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Lehmer generator: 1951 D. H. Lehmer [2] One of the very earliest and most influential designs. Linear congruential generator (LCG) 1958 W. E. Thomson; A. Rotenberg [3] [4] A generalisation of the Lehmer generator and historically the most influential and studied generator. Lagged Fibonacci generator (LFG) 1958 G. J. Mitchell and D. P. Moore [5]

  4. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.

  5. Multiply-with-carry pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Multiply-with-carry...

    Thus, a multiply-with-carry generator is a Lehmer generator with modulus p and multiplier b −1 (mod p). This is the same as a generator with multiplier b, but producing output in reverse order, which does not affect the quality of the resultant pseudorandom numbers.

  6. D. H. Lehmer - Wikipedia

    en.wikipedia.org/wiki/D._H._Lehmer

    In September 1949, he presented the pseudorandom number generator now known as the Lehmer random number generator. [4] D. H. Lehmer wrote the article "The Machine Tools of Combinatorics," which is the first chapter in Edwin Beckenbach's Applied Combinatorial Mathematics (1964). [5] It describes methods for producing permutations, combinations, etc.

  7. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  8. Category:Pseudorandom number generators - Wikipedia

    en.wikipedia.org/wiki/Category:Pseudorandom...

    Lagged Fibonacci generator; Lehmer random number generator; Linear congruential generator; Linear-feedback shift register; M. Marsaglia polar method; Mersenne Twister;

  9. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    14.3 Pseudo-random numbers. 15 Arithmetic ... Lucas–Lehmer primality test; ... Cryptographically secure pseudo-random number generator; Middle-square method; Blum ...