Search results
Results from the WOW.Com Content Network
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
If A and B are sets and every element of A is also an element of B, then: . A is a subset of B, denoted by , or equivalently,; B is a superset of A, denoted by .; If A is a subset of B, but A is not equal to B (i.e. there exists at least one element of B which is not an element of A), then:
In all models of ZF¬C there is a vector space with no basis. There is a vector space with two bases of different cardinalities. There is a free complete Boolean algebra on countably many generators. [40] There is a set that cannot be linearly ordered. There exists a model of ZF¬C in which every set in R n is measurable.
For example, if two fair six-sided dice are thrown to generate two uniformly distributed integers, and , each in the range from 1 to 6, inclusive, the 36 possible ordered pairs of outcomes (,) constitute a sample space of equally likely events. In this case, the above formula applies, such as calculating the probability of a particular sum of ...
A probability function, , which assigns, to each event in the event space, a probability, which is a number between 0 and 1 (inclusive). In order to provide a model of probability, these elements must satisfy probability axioms. In the example of the throw of a standard die,
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
The first condition states that the whole set B, which contains all the elements of every subset, must belong to the nested set collection. Some authors [ 1 ] do not assume that B is nonempty. The second condition states that the intersection of every couple of sets in the nested set collection is not the empty set only if one set is a subset ...
The only subset of the empty set is the empty set itself; equivalently, the power set of the empty set is the set containing only the empty set. The number of elements of the empty set (i.e., its cardinality) is zero. The empty set is the only set with either of these properties. For any set A: The empty set is a subset of A