enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The theorem is named after Russian mathematician Pafnuty Chebyshev, although it was first formulated by his friend and colleague Irénée-Jules Bienaymé. [4]: 98 The theorem was first proved by Bienaymé in 1853 [5] and more generally proved by Chebyshev in 1867. [6] [7] His student Andrey Markov provided another proof in his 1884 Ph.D. thesis ...

  3. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    This theorem makes rigorous the intuitive notion of probability as the expected long-run relative frequency of an event's occurrence. It is a special case of any of several more general laws of large numbers in probability theory. Chebyshev's inequality. Let X be a random variable with finite expected value μ and finite non-zero variance σ 2.

  4. Chebyshev's theorem - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_theorem

    Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences

  5. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    This sum is called a Chebyshev series or a Chebyshev expansion. Since a Chebyshev series is related to a Fourier cosine series through a change of variables, all of the theorems, identities, etc. that apply to Fourier series have a Chebyshev counterpart. [16] These attributes include: The Chebyshev polynomials form a complete orthogonal system.

  6. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Theorem — For every absolutely continuous function on [−1, 1] the sequence of interpolating polynomials constructed on Chebyshev nodes converges to f(x) uniformly. [ 15 ] Related concepts

  7. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.

  8. Chernoff bound - Wikipedia

    en.wikipedia.org/wiki/Chernoff_bound

    In 1938 Harald Cramér had published an almost identical concept now known as Cramér's theorem. It is a sharper bound than the first- or second-moment-based tail bounds such as Markov's inequality or Chebyshev's inequality, which only yield power-law bounds on tail decay. However, when applied to sums the Chernoff bound requires the random ...

  9. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.