enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision, where a small portion of the data is tagged, and self-supervision.

  3. Generalized Hebbian algorithm - Wikipedia

    en.wikipedia.org/wiki/Generalized_Hebbian_algorithm

    The generalized Hebbian algorithm is an iterative algorithm to find the highest principal component vectors, in an algorithmic form that resembles unsupervised Hebbian learning in neural networks. Consider a one-layered neural network with n {\displaystyle n} input neurons and m {\displaystyle m} output neurons y 1 , … , y m {\displaystyle y ...

  4. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    The goals of learning are understanding and prediction. Learning falls into many categories, including supervised learning, unsupervised learning, online learning, and reinforcement learning. From the perspective of statistical learning theory, supervised learning is best understood. [4] Supervised learning involves learning from a training set ...

  5. Category:Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Category:Unsupervised_learning

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  6. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  7. Adaptive resonance theory - Wikipedia

    en.wikipedia.org/wiki/Adaptive_resonance_theory

    Adaptive resonance theory (ART) is a theory developed by Stephen Grossberg and Gail Carpenter on aspects of how the brain processes information.It describes a number of artificial neural network models which use supervised and unsupervised learning methods, and address problems such as pattern recognition and prediction.

  8. Competitive learning - Wikipedia

    en.wikipedia.org/wiki/Competitive_learning

    Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.

  9. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    The examples are usually administered several times as iterations. The training utilizes competitive learning. When a training example is fed to the network, its Euclidean distance to all weight vectors is computed. The neuron whose weight vector is most similar to the input is called the best matching unit (BMU). The weights of the BMU and ...