enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 2,3-Dichlorobutadiene - Wikipedia

    en.wikipedia.org/wiki/2,3-Dichlorobutadiene

    2,3-Dichlorobutadiene is a chlorinated derivative of butadiene. This colorless liquid is prone to polymerization, more so than 2-chlorobutadiene. It is used to produce specialized neoprene rubbers. It can be prepared by the copper-catalyzed isomerization of dichlorobutynes. Alternatively dehydrochlorination of 2,3,4-trichloro-1-butene: [1]

  3. Asymmetric carbon - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_carbon

    In stereochemistry, an asymmetric carbon is a carbon atom that is bonded to four different types of atoms or groups of atoms. [1] [2] The four atoms and/or groups attached to the carbon atom can be arranged in space in two different ways that are mirror images of each other, and which lead to so-called left-handed and right-handed versions (stereoisomers) of the same molecule.

  4. Stereocenter - Wikipedia

    en.wikipedia.org/wiki/Stereocenter

    A molecule having multiple stereocenters will produce many possible stereoisomers. In compounds whose stereoisomerism is due to tetrahedral (sp 3) stereogenic centers, the total number of hypothetically possible stereoisomers will not exceed 2 n, where n is the number of tetrahedral stereocenters. However, this is an upper bound because ...

  5. Stereoisomerism - Wikipedia

    en.wikipedia.org/wiki/Stereoisomerism

    Le Bel-van't Hoff rule states that for a structure with n asymmetric carbon atoms, there is a maximum of 2 n different stereoisomers possible. As an example, D-glucose is an aldohexose and has the formula C 6 H 12 O 6. Four of its six carbon atoms are stereogenic, which means D-glucose is one of 2 4 =16 possible stereoisomers. [20] [21]

  6. Stereochemistry - Wikipedia

    en.wikipedia.org/wiki/Stereochemistry

    Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.

  7. Stereospecificity - Wikipedia

    en.wikipedia.org/wiki/Stereospecificity

    For example, dibromocarbene and cis-2-butene yield cis-2,3-dimethyl-1,1-dibromocyclopropane, whereas the trans isomer exclusively yields the trans cyclopropane. [ 4 ] This addition remains stereospecific even if the starting alkene is not isomerically pure, as the products' stereochemistry will match the reactants'.

  8. Stereoselectivity - Wikipedia

    en.wikipedia.org/wiki/Stereoselectivity

    An example of modest stereoselectivity is the dehydrohalogenation of 2-iodobutane which yields 60% trans-2-butene and 20% cis-2-butene. [5] Since alkene geometric isomers are also classified as diastereomers, this reaction would also be called diastereoselective.

  9. Diastereomer - Wikipedia

    en.wikipedia.org/wiki/Diastereomer

    The possibilities for different isomers continue to multiply as more stereocenters are added to a molecule. In general, the number of stereoisomers of a molecule can be determined by calculating 2 n, where n = the number of chiral centers in the molecule. This holds true except in cases where the molecule has meso forms.