Search results
Results from the WOW.Com Content Network
It is the repeating part in the decimal expansion of the rational number 1 / 7 = 0. 142857. Thus, multiples of 1 / 7 are simply repeated copies of the corresponding multiples of 142857:
In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...
For example, decimal 365 (10) or senary 1 405 (6) corresponds to binary 1 0110 1101 (2) (nine bits) and to ternary 111 112 (3) (six digits). However, they are still far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary (base 9) and septemvigesimal (base 27).
This computation produces a different result than the arithmetic mean, with the difference being greater when the angles are widely distributed. For example, the arithmetic mean of the three angles 0°, 0°, and 90° is (0° + 0° + 90°) / 3 = 30°, but the vector mean is arctan(1/2) = 26.565°.
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal.
In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained. By symmetry, the bisected side is half of the side of the equilateral triangle, so one concludes sin ( 30 ∘ ) = 1 / 2 {\displaystyle \sin(30^{\circ ...
The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.
Clearly the next factorial number representation after 5:4:3:2:1:0! is 1:0:0:0:0:0:0! which designates 6! = 720 10, the place value for the radix-7 digit. So the former number, and its summed out expression above, is equal to: