Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
Given any number , we seek to prove that there is a prime larger than . Suppose to the contrary that no such p exists (an application of proof by contradiction). Then all primes are smaller than or equal to n {\displaystyle n} , and we may form the list p 1 , … , p k {\displaystyle p_{1},\ldots ,p_{k}} of them all.
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
The use of constructivist logics in general has been a controversial topic among mathematicians and philosophers (see, for example, the Brouwer–Hilbert controversy). A common objection to their use is the above-cited lack of two central rules of classical logic, the law of excluded middle and double negation elimination.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
The resolution rule in propositional logic is a single valid inference rule that produces a new clause implied by two clauses containing complementary literals. A literal is a propositional variable or the negation of a propositional variable.
For example, direct proof can be used to prove that the sum of two even integers is always even: Consider two even integers x and y. Since they are even, they can be written as x = 2a and y = 2b, respectively, for some integers a and b. Then the sum is x + y = 2a + 2b = 2(a+b). Therefore x+y has 2 as a factor and, by definition, is even. Hence ...
The previous example employed the contrapositive of a definition to prove a theorem. One can also prove a theorem by proving the contrapositive of the theorem's statement. To prove that if a positive integer N is a non-square number , its square root is irrational , we can equivalently prove its contrapositive, that if a positive integer N has ...