Search results
Results from the WOW.Com Content Network
Average of chords. In ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean – the sum of the numbers divided by how many numbers are in the list. For example, the mean average of the numbers 2, 3, 4, 7 ...
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().
As another example, the "average time" between 11 PM and 1 AM is either midnight or noon, depending on whether the two times are part of a single night or part of a single calendar day. The circular mean is one of the simplest examples of directional statistics and of statistics of non-Euclidean spaces. This computation produces a different ...
Law of the unconscious statistician: The expected value of a measurable function of , (), given that has a probability density function (), is given by the inner product of and : [34] [()] = (). This formula also holds in multidimensional case, when g {\displaystyle g} is a function of several random variables, and f {\displaystyle f} is ...
It is possible to calculate the five-number summary in the R programming language using the fivenum function. The summary function, when applied to a vector, displays the five-number summary together with the mean (which is not itself a part of the five-number summary).
A weighted average is an average that has multiplying factors to give different weights to data at different positions in the sample window. Mathematically, the weighted moving average is the convolution of the data with a fixed weighting function. One application is removing pixelization from a digital graphical image. [citation needed]
As a means of assessing CUSUM's performance, Page defined the average run length (A.R.L.) metric; "the expected number of articles sampled before action is taken." He further wrote: [ 2 ] When the quality of the output is satisfactory the A.R.L. is a measure of the expense incurred by the scheme when it gives false alarms, i.e., Type I errors ...
and the RMS for a function over all time is = [()]. The RMS over all time of a periodic function is equal to the RMS of one period of the function. The RMS value of a continuous function or signal can be approximated by taking the RMS of a sample consisting of equally spaced observations.