Search results
Results from the WOW.Com Content Network
If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.
The axiom of choice occurs again in the study of (topological) product spaces; for example, Tychonoff's theorem on compact sets is a more complex and subtle example of a statement that requires the axiom of choice and is equivalent to it in its most general formulation, [3] and shows why the product topology may be considered the more useful ...
Cylinder sets are often used to define a topology on sets that are subsets of and occur frequently in the study of symbolic dynamics; see, for example, subshift of finite type. Cylinder sets are often used to define a measure , using the Kolmogorov extension theorem ; for example, the measure of a cylinder set of length m might be given by 1/ m ...
The product in this category is given by the cartesian product of sets. The coproduct is given by the disjoint union: given sets A i where i ranges over some index set I, we construct the coproduct as the union of A i ×{i} (the cartesian product with i serves to ensure that all the components stay disjoint).
Then, for the minimal product measure the measure of a set is the sum of the measures of its horizontal sections, while for the maximal product measure a set has measure infinity unless it is contained in the union of a countable number of sets of the form A×B, where either A has Lebesgue measure 0 or B is a single point. (In this case the ...
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.
Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian products. Suppose that A is a set with a function w : A → N assigning a weight to each of the elements of A , and suppose additionally that the fibre over any natural number ...
The product topology for infinite products has a twist, and this has to do with being able to make all the projection maps continuous and to make all functions into the product continuous if and only if all its component functions are continuous (that is, to satisfy the categorical definition of product: the morphisms here are continuous ...