enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Disjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Disjunctive_normal_form

    In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. [1] As a normal form, it is useful in automated theorem proving.

  3. Canonical normal form - Wikipedia

    en.wikipedia.org/wiki/Canonical_normal_form

    In Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form , [1] minterm canonical form, or Sum of Products (SoP or SOP) as a disjunction (OR) of minterms. The De Morgan dual is the canonical conjunctive normal form ( CCNF ), maxterm canonical form , or Product of Sums ( PoS or POS ) which is a ...

  4. Conjunction/disjunction duality - Wikipedia

    en.wikipedia.org/wiki/Conjunction/disjunction...

    [8] [9] This provides a procedure for converting between conjunctive normal form and disjunctive normal form. [10] Since the Disjunctive Normal Form Theorem shows that every formula of propositional logic is expressible in disjunctive normal form, every formula is also expressible in conjunctive normal form by means of effecting the conversion ...

  5. Method of analytic tableaux - Wikipedia

    en.wikipedia.org/wiki/Method_of_analytic_tableaux

    A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]

  6. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    Using the laws of Boolean algebra, every propositional logic formula can be transformed into an equivalent conjunctive normal form, which may, however, be exponentially longer. For example, transforming the formula (x 1 ∧y 1) ∨ (x 2 ∧y 2) ∨ ... ∨ (x n ∧y n) into conjunctive normal form yields (x 1 ∨ x 2 ∨ … ∨ x n) ∧

  7. Zhegalkin polynomial - Wikipedia

    en.wikipedia.org/wiki/Zhegalkin_polynomial

    For example, start such a cellular automaton with eight cells set up with the outputs of the truth table (or the coefficients of the canonical disjunctive normal form) of the Boolean expression: 10101001. Then run the cellular automaton for seven more generations while keeping a record of the state of the leftmost cell.

  8. List of valid argument forms - Wikipedia

    en.wikipedia.org/wiki/List_of_valid_argument_forms

    In Disjunctive Syllogism, the first premise establishes two options. The second takes one away, so the conclusion states that the remaining one must be true. [3] It is shown below in logical form. Either A or B Not A Therefore B. When A and B are replaced with real life examples it looks like below.

  9. Conjunctive normal form - Wikipedia

    en.wikipedia.org/wiki/Conjunctive_normal_form

    In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs.