enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-linear model - Wikipedia

    en.wikipedia.org/wiki/Log-linear_model

    A log-linear plot or graph, which is a type of semi-log plot. Poisson regression for contingency tables, a type of generalized linear model . The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X , or more immediately, the transformed quantities f i ( X ...

  3. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression [1] (or logit regression) estimates the parameters of a logistic model (the coefficients in the linear or non linear combinations).

  4. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...

  5. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    In such models, after log-transforming the dependent and independent variables, a Simple linear regression model can be fitted, with the errors becoming homoscedastic. This model is useful when dealing with data that exhibits exponential growth or decay, while the errors continue to grow as the independent value grows (i.e., heteroscedastic ...

  6. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]

  7. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    The log-linear models can be thought of to be on a continuum with the two extremes being the simplest model and the saturated model. The simplest model is the model where all the expected frequencies are equal. This is true when the variables are not related. The saturated model is the model that includes all the model components.

  8. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    Another generalized log-logistic distribution is the log-transform of the metalog distribution, in which power series expansions in terms of are substituted for logistic distribution parameters and . The resulting log-metalog distribution is highly shape flexible, has simple closed form PDF and quantile function , can be fit to data with linear ...

  9. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    Logistic regression and other log-linear models are also commonly used in machine learning. A generalisation of the logistic function to multiple inputs is the softmax activation function , used in multinomial logistic regression .