Search results
Results from the WOW.Com Content Network
A hydroxide ion acting as a nucleophile in an S N 2 reaction, converting a haloalkane into an alcohol. In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they ...
The second step is the loss of a sulfur dioxide molecule and its replacement by the chloride, which was attached to the sulphite group. The difference between S N 1 and S N i is actually that the ion pair is not completely dissociated , and therefore no real carbocation is formed, which else would lead to a racemisation.
Nucleophile strength is also affected by charge and electronegativity: nucleophilicity increases with increasing negative charge and decreasing electronegativity. For example, OH − is a better nucleophile than water, and I − is a better nucleophile than Br − (in polar protic solvents). In a polar aprotic solvent, nucleophilicity increases ...
A sulfur nucleophile improved the enzymes transferase activity (sometimes called subtiligase). Selenium and tellurium nucleophiles converted the enzyme into an oxidoreductase. [51] [52] When the nucleophile of TEV protease was converted from cysteine to serine, it protease activity was strongly reduced, but was able to be restored by directed ...
A classic example of NGP is the reaction of a sulfur or nitrogen mustard with a nucleophile, the rate of reaction is much higher for the sulfur mustard and a nucleophile than it would be for a primary or secondary alkyl chloride without a heteroatom. [4] Ph−S−CH 2 −CH 2 −Cl reacts with water 600 times faster than CH 3 −CH 2 −CH 2 ...
From the sulfide they form the amino acids cysteine and methionine, sulfolipids, and other sulfur compounds. Animals obtain sulfur from cysteine and methionine in the protein that they consume. Sulfur is the third most abundant mineral element in the body. [21] The amino acids cysteine and methionine are used by the body to make glutathione.
Sulfur may be found by itself and historically was usually obtained in this form; pyrite has also been a source of sulfur. [82] In volcanic regions in Sicily , in ancient times, it was found on the surface of the Earth, and the " Sicilian process " was used: sulfur deposits were piled and stacked in brick kilns built on sloping hillsides, with ...
The biological use of sulfur as an alternative to carbon is purely hypothetical, especially because sulfur usually forms only linear chains rather than branched ones. (The biological use of sulfur as an electron acceptor is widespread and can be traced back 3.5 billion years on Earth, thus predating the use of molecular oxygen. [28]