enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    For backpropagation, the activation as well as the derivatives () ′ (evaluated at ) must be cached for use during the backwards pass. The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative , evaluated at the value of the network (at each node) on the input x {\displaystyle x} :

  3. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required.

  4. Seppo Linnainmaa - Wikipedia

    en.wikipedia.org/wiki/Seppo_Linnainmaa

    Seppo Ilmari Linnainmaa (born 28 September 1945) is a Finnish mathematician and computer scientist known for creating the modern version of backpropagation. Biography [ edit ]

  5. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    In the case of gradient descent, that would be when the vector of independent variable adjustments is proportional to the gradient vector of partial derivatives. The gradient descent can take many iterations to compute a local minimum with a required accuracy , if the curvature in different directions is very different for the given function.

  6. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Then, the backpropagation algorithm is used to find the gradient of the loss function with respect to all the network parameters. Consider an example of a neural network that contains a recurrent layer and a feedforward layer . There are different ways to define the training cost, but the aggregated cost is always the average of the costs of ...

  7. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is the problem of greatly diverging gradient magnitudes between earlier and later layers encountered when training neural networks with backpropagation. In such methods, neural network weights are updated proportional to their partial derivative of the loss function. [1]

  8. Today's Wordle Hint, Answer for #1326 on Tuesday, February 4 ...

    www.aol.com/todays-wordle-hint-answer-1326...

    If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1326 ahead. Let's start with a few hints.

  9. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]