enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    For backpropagation, the activation as well as the derivatives () ′ (evaluated at ) must be cached for use during the backwards pass. The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative , evaluated at the value of the network (at each node) on the input x {\displaystyle x} :

  3. Seppo Linnainmaa - Wikipedia

    en.wikipedia.org/wiki/Seppo_Linnainmaa

    Seppo Ilmari Linnainmaa (born 28 September 1945) is a Finnish mathematician and computer scientist known for creating the modern version of backpropagation. Biography [ edit ]

  4. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Backpropagation was first described in 1986, with stochastic gradient descent being used to efficiently optimize parameters across neural networks with multiple hidden layers. Soon after, another improvement was developed: mini-batch gradient descent, where small batches of data are substituted for single samples.

  5. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]

  6. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    To find the right derivative, we again apply the chain rule, this time differentiating with respect to the total input to , : = () Note that the output of the j {\displaystyle j} th neuron, y j {\displaystyle y_{j}} , is just the neuron's activation function g {\displaystyle g} applied to the neuron's input h j {\displaystyle h_{j}} .

  7. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight. [1]

  8. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    Automatic differentiation is a subtle and central tool to automatize the simultaneous computation of the numerical values of arbitrarily complex functions and their derivatives with no need for the symbolic representation of the derivative, only the function rule or an algorithm thereof is required [3] [4]. Auto-differentiation is thus neither ...

  9. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    A proof of concept compiler toolchain called Myia uses a subset of Python as a front end and supports higher-order functions, recursion, and higher-order derivatives. [8] [9] [10] Operator overloading, dynamic graph based approaches such as PyTorch, NumPy's autograd package as well as Pyaudi. Their dynamic and interactive nature lets most ...