Search results
Results from the WOW.Com Content Network
In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, [ 1 ] [ 2 ] and is thus expressed in terms of energy per unit area.
The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.
Relationship to energy release rate and J-integral [ edit ] In plane stress conditions, the strain energy release rate ( G {\displaystyle G} ) for a crack under pure mode I, or pure mode II loading is related to the stress intensity factor by:
Using the compliance method, the critical strain energy release rate is given by G I c = 3 P C δ C 2 B a {\displaystyle G_{Ic}={\frac {3P_{C}\delta _{C}}{2Ba}}} (2) where P C {\displaystyle P_{C}} and δ C {\displaystyle \delta _{C}} are the maximum load and displacement respectively by determining when the load deflection curve has become ...
The fracture toughness and the critical strain energy release rate for plane stress are related by = where is the Young's modulus. If an initial crack size is known, then a critical stress can be determined using the strain energy release rate criterion.
Compute the change in the free energy (surface energy − elastic energy) as a function of the crack length. Failure occurs when the free energy attains a peak value at a critical crack length, beyond which the free energy decreases as the crack length increases, i.e. by causing fracture. Using this procedure, Griffith found that
A type of strain gauge called a crack-mouth clip gage is used to measure the crack opening. [3] The crack tip plastically deforms until a critical point after which a cleavage crack is initiated that may lead to either partial or complete failure. The critical load and strain gauge measurements at the load are noted and a graph is plotted.
The usage of R-curves in fracture analysis is a more complex, but more comprehensive failure criteria compared to the common failure criteria that fracture occurs when where is simply a constant value called the critical energy release rate. An R-curve based failure analysis takes into account the notion that a material's resistance to fracture ...