enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    In summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half-open interval. [4] [5] A degenerate interval is any set consisting of a single real number (i.e., an interval of the form [a, a]). [6] Some authors include the empty set in this definition.

  3. Lower limit topology - Wikipedia

    en.wikipedia.org/wiki/Lower_limit_topology

    The lower limit topology is finer (has more open sets) than the standard topology on the real numbers (which is generated by the open intervals). The reason is that every open interval can be written as a (countably infinite) union of half-open intervals. For any real and , the interval [,) is clopen in (i.e., both open and closed).

  4. Half-open - Wikipedia

    en.wikipedia.org/wiki/Half-open

    Half-open may refer to: Half-open file in chess; Half-open vowel, a class of vowel sound; ... Half-open interval, an interval containing only one of its endpoints;

  5. Number line - Wikipedia

    en.wikipedia.org/wiki/Number_line

    The closed interval [a,b]. The section of the number line between two numbers is called an interval. If the section includes both numbers it is said to be a closed interval, while if it excludes both numbers it is called an open interval. If it includes one of the numbers but not the other one, it is called a half-open interval.

  6. Peano–Jordan measure - Wikipedia

    en.wikipedia.org/wiki/Peano–Jordan_measure

    Jordan measure is first defined on Cartesian products of bounded half-open intervals = [,) [,) [,) that are closed at the left and open at the right with all endpoints and finite real numbers (half-open intervals is a technical choice; as we see below, one can use closed or open intervals if preferred).

  7. Borel measure - Wikipedia

    en.wikipedia.org/wiki/Borel_measure

    While there are many Borel measures μ, the choice of Borel measure that assigns ((,]) = for every half-open interval (,] is sometimes called "the" Borel measure on . This measure turns out to be the restriction to the Borel σ-algebra of the Lebesgue measure λ {\displaystyle \lambda } , which is a complete measure and is defined on the ...

  8. Nested interval topology - Wikipedia

    en.wikipedia.org/wiki/Nested_interval_topology

    The open interval (0,1) is the set of all real numbers between 0 and 1; but not including either 0 or 1. To give the set (0,1) a topology means to say which subsets of (0,1) are "open", and to do so in a way that the following axioms are met: [1] The union of open sets is an open set. The finite intersection of open sets is an open set.

  9. Half-open interval topology - Wikipedia

    en.wikipedia.org/?title=Half-open_interval...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Half-open_interval_topology&oldid=16500684"