Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
The permutation by duplication mechanism for producing a circular permutation. First, a gene 1-2-3 is duplicated to form 1-2-3-1-2-3. Next, a start codon is introduced before the first domain 2 and a stop codon after the second domain 1, removing redundant sections and resulting in a circularly permuted gene 2-3-1.
There are a few equivalent ways to state this definition. A cyclic order on X is the same as a permutation that makes all of X into a single cycle, which is a special type of permutation - a circular permutation. Alternatively, a cycle with n elements is also a Z n-torsor: a set with a free transitive action by a finite cyclic group. [1]
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
Circular shifts are used often in cryptography in order to permute bit sequences. Unfortunately, many programming languages, including C, do not have operators or standard functions for circular shifting, even though virtually all processors have bitwise operation instructions for it (e.g. Intel x86 has ROL and ROR).
This page was last edited on 14 October 2006, at 19:52 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In combinatorial mathematics and theoretical computer science, a (classical) permutation pattern is a sub-permutation of a longer permutation.Any permutation may be written in one-line notation as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2.
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...