Search results
Results from the WOW.Com Content Network
Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...
convert a float to a double f2i 8b 1000 1011 value → result convert a float to an int f2l 8c 1000 1100 value → result convert a float to a long fadd 62 0110 0010 value1, value2 → result add two floats faload 30 0011 0000 arrayref, index → value load a float from an array fastore 51 0101 0001 arrayref, index, value →
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The Java virtual machine's set of primitive data types consists of: [12] byte, short, int, long, char (integer types with a variety of ranges) float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address ...
Many languages have explicit pointers or references. Reference types differ from these in that the entities they refer to are always accessed via references; for example, whereas in C++ it's possible to have either a std:: string and a std:: string *, where the former is a mutable string and the latter is an explicit pointer to a mutable string (unless it's a null pointer), in Java it is only ...
Minifloats (in Survey of Floating-Point Formats) OpenEXR site; Half precision constants from D3DX; OpenGL treatment of half precision; Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating ...
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
Primitive wrapper classes are not the same thing as primitive types. Whereas variables, for example, can be declared in Java as data types double, short, int, etc., the primitive wrapper classes create instantiated objects and methods that inherit but hide the primitive data types, not like variables that are assigned the data type values.