Search results
Results from the WOW.Com Content Network
The conduction band offset would then be given by the difference in electron affinity (energy from upper conducting band to vacuum level) of the two semiconductors: = Next, suppose that the band gap of semiconductor 2 is large enough that the valence band of semiconductor 1 lies at a higher energy than that of semiconductor 2. Then the valence ...
In this theory, the band offset is the sum of two terms, the first term is intrinsic and depends solely on the bulk properties, the second term, which vanishes for isovalent and abrupt non-polar heterojunctions, depends on the interface geometry, and can easily be calculated once the geometry is known, as well as certain quantities (such as the ...
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
At the junction of two different semiconductors there is a sharp shift in band energies from one material to the other; the band alignment at the junction (e.g., the difference in conduction band energies) is fixed. At the junction of a semiconductor and metal, the bands of the semiconductor are pinned to the metal's Fermi level.
To find the resistance of a semiconductor at a given temperature, the inverse of the Steinhart–Hart equation must be used. See the Application Note , "A, B, C Coefficients for Steinhart–Hart Equation".
When more accuracy is desired in modelling the diode's turn-on characteristic, the model can be enhanced by doubling-up the standard PWL-model. This model uses two piecewise-linear diodes in parallel, as a way to model a single diode more accurately. PWL Diode model with 2 branches. The top branch has a lower forward-voltage and a higher ...
Johnson's figure of merit is a measure of suitability of a semiconductor material for high frequency power transistor applications and requirements. More specifically, it is the product of the charge carrier saturation velocity in the material and the electric breakdown field under same conditions, first proposed by Edward O. Johnson of RCA in 1965.