enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is a method used to determine if an outlier exists in a data set. [23] The strength of this method lies in the fact that it takes into account a data set's standard deviation, average and provides a statistically determined rejection zone; thus providing an objective method to determine if a data point is an outlier.

  3. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  4. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    First, the statistician may remove the suspected outliers from the data set and then use the arithmetic mean to estimate the location parameter. Second, the statistician may use a robust statistic, such as the median statistic. Peirce's criterion is a statistical procedure for eliminating outliers.

  5. Influential observation - Wikipedia

    en.wikipedia.org/wiki/Influential_observation

    An outlier may be defined as a data point that differs markedly from other observations. [6] [7] A high-leverage point are observations made at extreme values of independent variables. [8] Both types of atypical observations will force the regression line to be close to the point. [2]

  6. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. [2] Anomalies are instances or collections of data that occur very rarely in the data set and whose features differ significantly from most of the data.

  7. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    This outlier is expunged from the dataset and the test is iterated until no outliers are detected. However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses:

  8. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    The distribution of many statistics can be heavily influenced by outliers, values that are 'way outside' the bulk of the data. A typical strategy to account for, without eliminating altogether, these outlier values is to 'reset' outliers to a specified percentile (or an upper and lower percentile) of the data. For example, a 90% winsorization ...

  9. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    Outliers could also be evidence of a sample population that has a non-normal distribution or of a contaminated population data set. Consequently, as is the basic idea of descriptive statistics , when encountering an outlier , we have to explain this value by further analysis of the cause or origin of the outlier.