Search results
Results from the WOW.Com Content Network
An extrinsic semiconductor that has been doped with electron donor atoms is called an n-type semiconductor, because the majority of charge carriers in the crystal are negative electrons. An electron acceptor dopant is an atom which accepts an electron from the lattice, creating a vacancy where an electron should be called a hole which can move ...
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
Pure semiconductors that have been altered by the presence of dopants are known as extrinsic semiconductors (see intrinsic semiconductor). Dopants are introduced into semiconductors in a variety of techniques: solid sources, gases, spin on liquid, and ion implanting. See ion implantation, surface diffusion, and solid sources footnote.
Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits, and others.
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circuits, infrared light-emitting diodes, laser diodes, solar cells and optical windows.
Gallium nitride (Ga N) is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure.
It is often alloyed with lead to make lead tin telluride, which is used as an infrared detector material. Tin telluride normally forms p-type semiconductor (Extrinsic semiconductor) due to tin vacancies and is a low temperature superconductor. [4] SnTe exists in three crystal phases.
Indium arsenide, InAs, or indium monoarsenide, is a narrow-bandgap semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. [5] Indium arsenide is similar in properties to gallium arsenide and is a direct bandgap material, with a bandgap of 0.35 eV at room temperature.