enow.com Web Search

  1. Ads

    related to: class 11 linear inequalities questions and solutions pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  3. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    Generalizations of the Farkas' lemma are about the solvability theorem for convex inequalities, [4] i.e., infinite system of linear inequalities. Farkas' lemma belongs to a class of statements called "theorems of the alternative": a theorem stating that exactly one of two systems has a solution. [5]

  4. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  5. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.

  6. Hölder's inequality - Wikipedia

    en.wikipedia.org/wiki/Hölder's_inequality

    Hölder's inequality is used to prove the Minkowski inequality, which is the triangle inequality in the space L p (μ), and also to establish that L q (μ) is the dual space of L p (μ) for p ∈ [1, ∞). Hölder's inequality (in a slightly different form) was first found by Leonard James Rogers .

  7. Linear matrix inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_matrix_inequality

    In convex optimization, a linear matrix inequality (LMI) is an expression of the form ⁡ ():= + + + + where = [, =, …,] is a real vector,,,, …, are symmetric matrices, is a generalized inequality meaning is a positive semidefinite matrix belonging to the positive semidefinite cone + in the subspace of symmetric matrices .

  8. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In the context of metric measure spaces, the definition of a Poincaré inequality is slightly different.One definition is: a metric measure space supports a (q,p)-Poincare inequality for some , < if there are constants C and λ ≥ 1 so that for each ball B in the space, ‖ ‖ ⁡ () ‖ ‖ ().

  9. Weyl's inequality - Wikipedia

    en.wikipedia.org/wiki/Weyl's_inequality

    In linear algebra, Weyl's inequality is a theorem about the changes to eigenvalues of an Hermitian matrix that is perturbed. It can be used to estimate the eigenvalues of a perturbed Hermitian matrix.

  1. Ads

    related to: class 11 linear inequalities questions and solutions pdf