Search results
Results from the WOW.Com Content Network
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
In mathematics, a nonlocal operator is a mapping which maps functions on a topological space to functions, in such a way that the value of the output function at a given point cannot be determined solely from the values of the input function in any neighbourhood of any point. An example of a nonlocal operator is the Fourier transform.
If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used. If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming ...
This is an example of a non-linear functional. The Riemann integral is a linear functional on the vector space of functions defined on [a, b] that are Riemann-integrable from a to b. In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author).
For example, the imaginary number is undefined within the set of real numbers. So it is meaningless to reason about the value, solely within the discourse of real numbers. However, defining the imaginary number i {\displaystyle i} to be equal to − 1 {\displaystyle {\sqrt {-1}}} , allows there to be a consistent set of mathematics referred to ...
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [ 1 ] [ 2 ] [ 3 ] This concept first arose in calculus , and was later generalized to the more abstract setting of order theory .
A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1]