Search results
Results from the WOW.Com Content Network
The polygon is the convex hull of its edges. Additional properties of convex polygons include: The intersection of two convex polygons is a convex polygon. A convex polygon may be triangulated in linear time through a fan triangulation, consisting in adding diagonals from one vertex to all other vertices.
An example of a concave polygon. A simple polygon that is not convex is called concave, [1] non-convex [2] or reentrant. [3] A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive. [4]
Non-convex: a line may be found which meets its boundary more than twice. Equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple: the boundary of the polygon does not cross itself. All convex polygons are simple. Concave: Non-convex and simple. There is at least one interior angle greater ...
In a polygon, a vertex is called "convex" if the internal angle of the polygon (i.e., the angle formed by the two edges at the vertex with the polygon inside the angle) is less than π radians (180°, two right angles); otherwise, it is called "concave" or "reflex". [5]
The internal angle of a simple polygon, at one of its vertices, is the angle spanned by the interior of the polygon at that vertex. A vertex is convex if its internal angle is less than (a straight angle, 180°) and concave if the internal angle is greater than .
This definition is equivalent to the definition of convex curves from support lines. Every convex curve, defined as a curve with a support line through each point, is a subset of the boundary of its own convex hull. Every connected subset of the boundary of a convex set has a support line through each of its points. [8] [9] [19]
A point-set triangulation is a polygon triangulation of the convex hull of a set of points. A Delaunay triangulation is another way to create a triangulation based on a set of points. The associahedron is a polytope whose vertices correspond to the triangulations of a convex polygon. Polygon triangle covering, in which the triangles may overlap.
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.