Search results
Results from the WOW.Com Content Network
The area of the base of a cylinder is the area of a circle (in this case we define that the circle has a radius with measure ): =. To calculate the total area of a right circular cylinder, you simply add the lateral area to the area of the two bases: = +. Replacing = and =, we have:
The circumference is 2 π r, and the area of a triangle is half the base times the height, yielding the area π r 2 for the disk. Prior to Archimedes, Hippocrates of Chios was the first to show that the area of a disk is proportional to the square of its diameter, as part of his quadrature of the lune of Hippocrates , [ 2 ] but did not identify ...
The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ): a = R 2 2 ( θ − sin θ ) {\displaystyle a={\tfrac {R^{2}}{2}}\left(\theta -\sin \theta \right)}
the area of the top base: πr 2; the area of the bottom base: πr 2; the area of the side: 2πrh; The area of the top and bottom bases is the same, and is called the base area, B. The area of the side is known as the lateral area, L. An open cylinder does not include either top or bottom elements, and therefore has surface area (lateral area) =
In speaking about these processes, the measure (length or area) of a figure's base is often referred to as its "base." By this usage, the area of a parallelogram or the volume of a prism or cylinder can be calculated by multiplying its "base" by its height; likewise, the areas of triangles and the volumes of cones and pyramids are fractions of ...
Every unit of length has a corresponding unit of area, namely the area of a square with the given side length. Thus areas can be measured in square metres (m 2 ), square centimetres (cm 2 ), square millimetres (mm 2 ), square kilometres (km 2 ), square feet (ft 2 ), square yards (yd 2 ), square miles (mi 2 ), and so forth. [ 13 ]
h = the height of the semi-ellipsoid from the base cicle's center to the edge Solid paraboloid of revolution around z-axis: a = the radius of the base circle h = the height of the paboloid from the base cicle's center to the edge
To find the surface area of the sphere, Archimedes argued that just as the area of the circle could be thought of as infinitely many infinitesimal right triangles going around the circumference (see Measurement of the Circle), the volume of the sphere could be thought of as divided into many cones with height equal to the radius and base on the ...